
Introduction to  
Unicode & i18n in Rust

Behnam Esfahbod
Software Engineer

The Rust Programming Language has native support for Unicode
Characters’ Unicode Scalar Values, to be exact. The language provides fast
and compact string type with low-level control over memory consumption,
while providing a high-level API and enforcing memory and data safety at
compile time. The Rust Standard Library covers the basic Unicode
functionalities, and third-party libraries – called Crates – are responsible for
the rest. UNIC’s Unicode and Internationalization Crates for Rust is a project
to develop a collection of crates for Unicode and internationalization data
and algorithm, and tools to build them, designed to have reusable modules
and easy-to-use and efficient API.

In this talk we will cover the basics of Rust's API for characters and strings,
and look under the hood of how they are implemented in the compiler and
the standard library. Afterwards, we look at UNIC's design model, how it
implements various features, and lessons learned from building sharable
organic micro components.

The talk is suitable for anyone new to Unicode, or Unicode experts who like
to learn about how things are done in the Rust world.

Abstract

42nd

Internationalization &

Unicode Conference

September 2018

Santa Clara, CA, USA

!2

The Rust Programming Language has native support for Unicode
Characters’ Unicode Scalar Values, to be exact. The language provides fast
and compact string type with low-level control over memory consumption,
while providing a high-level API and enforcing memory and data safety at
compile time. The Rust Standard Library covers the basic Unicode
functionalities, and third-party libraries – called Crates – are responsible for
the rest. UNIC’s Unicode and Internationalization Crates for Rust is a project
to develop a collection of crates for Unicode and internationalization data
and algorithm, and tools to build them, designed to have reusable modules
and easy-to-use and efficient API.

In this talk we will cover the basics of Rust's API for characters and strings,
and look under the hood of how they are implemented in the compiler and
the standard library. Afterwards, we look at UNIC's design model, how it
implements various features, and lessons learned from building sharable
organic micro components.

The talk is suitable for anyone new to Unicode, or Unicode experts who like
to learn about how things are done in the Rust world.

Abstract

42nd

Internationalization &

Unicode Conference

September 2018

Santa Clara, CA, USA

!3

Fluent 1.0 — Next Generation Localization System from Mozilla  
by Zibi Braniecki

Localization systems have been largely stagnant over the last 20 years.
The last major innovation - ICU MessageFormat - has been designed
before Unicode 3.0, targeting C++ and Java environments. Several
attempts have been made since then to fit the API into modern
programming environments with mixed results.

Fluent is a modern localization system designed over last 7 years by
Mozilla. It builds on top of MessageFormat, ICU and CLDR, bringing
integration with modern ICU features, bidirectionality, user friendly file
format and bindings into modern programming environments like
JavaScript, DOM, React, Rust, Python and others. The system comes with
a full localization workflow cycle, command line tools and a CAT tool.

With the release of 1.0 we are ready to offer the new system to the wider
community and propose it for standardization.

Looking for
L10n in Rust?

Happening NOW 
on Track 3!

!4

• Software Engineer @ Quora, Inc.

• Co-Chair of Arabic Layout Task Force @ W3C i18n Activity

• Virgule Typeworks

• Facebook, Inc.

• IRNIC Domain Registry

• Sharif FarsiWeb, Inc.

About me

!5

• Quick Intro to Rust

• Characters & Strings

• It Gets Complicated!

• On Top of the Language

This talk

!6

Quick Intro to Rust

XKCD | GOTO [CC BY-NC 2.5]!8

https://www.xkcd.com/292/

History

!9

• 2006: The project started out of a personal project of Graydon Hoare

- OCaml compiler

• 2009: Mozilla began sponsoring

• 2011: Self-hosting compiler, using LLVM as backend

History

!10

• 2006: The project started out of a personal project of Graydon Hoare

- OCaml compiler

• 2009: Mozilla began sponsoring

• 2011: Self-hosting compiler, using LLVM as backend

• Pre-2015: Many design changes

- Drop garbage collection

- Move memory allocation out of the compiler

• 2015: Rust 1.0, the first stable release

• 2018: First major new edition, Rust 2018

https://blog.rust-lang.org/2018/07/27/what-is-rust-2018.html

Build System
& Tooling

!11

• Cargo

- Package manager

- Resolve dependencies

- Compile

- Build package and upload to crates.io

!12

• Cargo

- Package manager

- Resolve dependencies

- Compile

- Build package and upload to crates.io

• Common tooling

- Rustup

- Rustfmt

- Clippy

- Bindgen

Build System
& Tooling

Systems
Language

!13

• Abstraction without overhead (ZCA)

- & without hidden costs

Systems
Language

!14

• Abstraction without overhead (ZCA)

- & without hidden costs

• Compile to machine code

- & runs on microprocessors (no OS/malloc)

Systems
Language

!15

• Abstraction without overhead (ZCA)

- & without hidden costs

• Compile to machine code

- & runs on microprocessors (no OS/malloc)

• Full control of memory usage

- Even where there’s no memory allocation

Systems
Language

!16

• Abstraction without overhead (ZCA)

- & without hidden costs

• Compile to machine code

- & runs on microprocessors (no OS/malloc)

• Full control of memory usage

- Even where there’s no memory allocation

• Compiles to Web Assembly

- & runs in your favorite browser

Typed
Language

!17

• Statically typed

- All types are known at compile-time

- Generics for data types and code blocks

Typed
Language

!18

• Statically typed

- All types are known at compile-time

- Generics for data types and code blocks

• Strongly typed

- Harder to write incorrect programs

- No runtime null-pointer failures

Syntax

!19

Similar to C/C++ &

Java

Type System

!20

• Algebraic types

- First Systems PL

- Tuples, structs, enums, & unions

- Pattern matching (match) for selection and destructure

• Some basic types

- Option enum type: Some value, or None

- Result enum type: Ok value, or Err

Type System

!21

Option (example)

Type System

!22

Result (definition)

Type System

!23

Result (example)

Memory
Management
& Safety

!24

• No garbage collection

- Strict memory management

Memory
Management
& Safety

!25

• No garbage collection

- Strict memory management

• Ownership

- Memory parts are owned by exactly one variable

- Destruct memory when variable goes out of scope

Memory
Management
& Safety

!26

• No garbage collection

- Strict memory management

• Ownership

- Memory parts are owned by exactly one variable

- Destruct memory when variable goes out of scope

• Borrow checker

- Data-race free

- Similar to type checker

- Either read-only pointers or one read-write pointer

Memory
Management
& Safety

!27

• No garbage collection

- Strict memory management

• Ownership

- Memory parts are owned by exactly one variable

- Destruct memory when variable goes out of scope

• Borrow checker

- Data-race free

- Similar to type checker

- Either read-only pointers or one read-write pointer

• Lifetimes

- ≈ Position in the stack that owns the heap allocation

!28

• Traits

- Define behavior (can’t own data)

- Inheritance

- Deref

Interfaces &
Impl.s

!29

• Traits

- Define behavior (can’t own data)

- Inheritance

- Deref

• Impl blocks

- Implement types and traits (can’t own data)

- Composition

Interfaces &
Impl.s

!30

• Traits

- Define behavior (can’t own data)

- Inheritance

- Deref

• Impl blocks

- Implement types and traits (can’t own data)

- Composition

• Code blocks

- Functions, methods and closures

Interfaces &
Impl.s

!31

• Traits

- Define behavior (can’t own data)

- Inheritance

- Deref

• Impl blocks

- Implement types and traits (can’t own data)

- Composition

• Code blocks

- Functions, methods and closures

• Macros

- assert!(), format!(), print!(), println!()

Interfaces &
Impl.s

Characters & Strings

Numeric
Types

!33

• Signed & unsigned integer types

Numeric
Types

!34

• Signed & unsigned integer types

• Floating-point types

- f32, f64

let x = 1_112_064;

!35

https://www.quora.com/How-do-you-determine-how-many-characters-Unicode-can-store/answer/Behnam-Esfahbod-%E3%82%B9%E3%83%91%E3%83%BC%E3%83%95%E3%83%99%E3%83%89-%E3%81%B9%E3%81%AA%E3%82%80

let x = 1_112_064;
Ferris

!36

https://www.quora.com/How-do-you-determine-how-many-characters-Unicode-can-store/answer/Behnam-Esfahbod-%E3%82%B9%E3%83%91%E3%83%BC%E3%83%95%E3%83%99%E3%83%89-%E3%81%B9%E3%81%AA%E3%82%80

Character
Type

!37

Unicode scalar

values

• As defined by The Unicode Standard

- “Any Unicode code point, except high-surrogate and low-surrogate

code points.”

- U+0000 to U+D7FF (inclusive)

- U+E000 to U+10FFFF (inclusive)

- Total of 1,112,064 code points

Character
Type

!38

Limited integer

type

• No numerical operations on the char type

- What would the result of `U+D7FF + 1`?

Character
Type

!39

Algebraic types in

action

• Compiler knows that all values of the 4 bytes are not used!

!40

Pointer Types

!41

• Narrow pointers

- Point to Sized types (size is known at compile-time)

- Single usize value

Pointer Types

!42

• Narrow pointers

- Point to Sized types (size is known at compile-time)

- Single usize value

• Fat Pointers

- Point to something with unknown size (at compile-time)

- Single usize value, plus more data

Arrays, 
Slices &
Vectors

!43

• Arrays

- Sized sequence of elements

- [T; size]
- Unsized sequence of elements

- [T]

Arrays, 
Slices &
Vectors

!44

• Arrays

- Sized sequence of elements

- [T; size]
- Unsized sequence of elements

- [T]

• Slice

- A view into a sequence of elements

- &[T]

- On arrays, vectors, …

Arrays, 
Slices &
Vectors

!45

• Arrays

- Sized sequence of elements

- [T; size]
- Unsized sequence of elements

- [T]

• Slice

- A view into a sequence of elements

- &[T]

- On arrays, vectors, …

• Vector

- A dynamic-length sequence of

elements

- Sit in the heap

String Types

!46

• str

- A special [u8]

- Always a valid UTF-8 sequence

String Types

!47

• str

- A special [u8]

- Always a valid UTF-8 sequence

• &str

- A special &[u8]

String Types

!48

• str

- A special [u8]

- Always a valid UTF-8 sequence

• &str

- A special &[u8]

• String

- A dynamic UTF-8 sequence

- Return type of str functions that

cannot guarantee preserving bytes

length

String
Operations

!49

ASCII-only

• Apply to both &[u8] and &str

String
Operations

!50

Non-ASCII  
Unicode  

• Apply only to &str

Iterating
Strings

!51

• Iterating over characters of a string

!52

It Gets Complicated!

Cross-
Platform
Encoding
Challenges

• OS & environment variables

- File Names

- Environment variables

- Command-line parameters

• Different per system

- Unix: bytes; commonly UTF-8 these days

- Windows: UTF-16, but not always well-formed

!54

Cross-
Platform
Encoding
Challenges

• OS & environment variables

- File Names

- Environment variables

- Command-line parameters

• Different per system

- Unix: bytes; commonly UTF-8 these days

- Windows: UTF-16, but not always well-formed

• OsStr and OsString

- Internal data depends on OS

- &OsStr is to OsString as &str is to String

!55

Cross-
Platform 
Data Types

• OsStr and OsString

- Internal data depends on OS

- &OsStr is to OsString as &str is to String

!56

Cross-
Platform 
Data Types

• OsStr and OsString

- Internal data depends on OS

- &OsStr is to OsString as &str is to String

• Trait std::ffi::OsStr

- pub fn to_str(&self) -> Option<&str>

!57

Cross-
Platform 
Data Types

• OsStr and OsString

- Internal data depends on OS

- &OsStr is to OsString as &str is to String

• Trait std::ffi::OsStr

- pub fn to_str(&self) -> Option<&str>

• Trait std::os::unix::ffi::OsStrExt

- fn from_bytes(slice: &[u8]) -> &Self

- fn as_bytes(&self) -> &[u8]

!58

Cross-
Platform 
Data Types

• OsStr and OsString

- Internal data depends on OS

- &OsStr is to OsString as &str is to String

• Trait std::ffi::OsStr

- pub fn to_str(&self) -> Option<&str>

• Trait std::os::unix::ffi::OsStrExt

- fn from_bytes(slice: &[u8]) -> &Self

- fn as_bytes(&self) -> &[u8]

• Trait std::os::windows::ffi::OsStrExt

- fn encode_wide(&self) -> EncodeWide

!59

Working with
C APIs

• CStr and CString

- A borrowed reference to a nul-terminated array of bytes

- CStr is to CString as &str is to String

!60

Working with
C APIs

• CStr and CString

- A borrowed reference to a nul-terminated array of bytes

- CStr is to CString as &str is to String

• Trait std::ffi::CStr

- pub unsafe fn from_ptr<'a>(ptr: *const c_char) -> &'a CStr

- pub fn to_str(&self) -> Result<&str, Utf8Error>

!61

On Top of the Language

Unicode &
i18n Crates

!63

• Encoding/Charsets

- Firefox is already using a Rust component for that!

• Rust Project

- String algorithms needed for a compiler

• Servo Project

- Basic string algorithms needed for a rendering engine

• Locale-aware API

- Actually not much available yet

- WIP by Mozilla, et al.

Rust Compiler & Libraries

!64

UNIC
Experiment

UNIC: Unicode and

i18n Crates for
Rust

Core / core Standard Library / std

UNIC

Character Utilities / unic::char::*

Unicode Character Database 
unic::ucd::[bidi, name, age, normal, ident, segment, …]

Unicode
Bidirectional

Algorithm
unic::bidi

Unicode
Normalization

Algorithm
unic::bidi

Unicode
Segmentation

Algorithm
unic::segment

Unicode
IDNA

unic::idna

Unicode
Emoji

unic::emoji
…

What’s this?

!65

Hello سلام

How about
this?

!66

Hello سلام

A Case of
Missing Bidi
Context

How about Locale

Context?

!67

Hello سلامHello سلام

Summary: 
Programming
Languages

!68

• Machine language

Summary: 
Programming
Languages

!69

• Machine language

• Procedural

• GOTO

Summary: 
Programming
Languages

!70

• Machine language

• Procedural

• GOTO

• Functional

Summary: 
Programming
Languages

!71

• Machine language

• Procedural

• GOTO

• Functional

• Garbage collection

Summary: 
Programming
Languages

!72

• Machine language

• Procedural

• GOTO

• Functional

• Garbage collection

• Strict memory management

Summary: 
Unicode &
i18n

!73

• Byte == Char

Summary: 
Unicode &
i18n

!74

• Byte == Char

• Contextual Charset

Summary: 
Unicode &
i18n

!75

• Byte == Char

• Contextual Charset

• Separation of text encoding & font encoding

Summary: 
Unicode &
i18n

!76

• Byte == Char

• Contextual Charset

• Separation of text encoding & font encoding

• Unified encoding

Summary: 
Unicode &
i18n

!77

• Byte == Char

• Contextual Charset

• Separation of text encoding & font encoding

• Unified encoding

• Contextual Local

Summary: 
Unicode &
i18n

!78

• Byte == Char

• Contextual Charset

• Separation of text encoding & font encoding

• Unified encoding

• Contextual Local

• ???

HOPE

Additional
Resources

!80

• Rust Community

- rust-lang.org

- doc.rust-lang.org

- play.rust-lang.org

- users.rust-lang.org

- reddit.com/r/rust/

- rustup.rs

- crates.io

- unicode-rs.github.io

- newrustacean.com

• Servo, the Parallel Browser Engine Project

- servo.org

• UNIC: Unicode and Internationalization Crates for Rust

- https://github.com/open-i18n/rust-unic

http://rust-lang.org
http://doc.rust-lang.org
http://play.rust-lang.org
http://users.rust-lang.org
http://reddit.com/r/rust/
http://rustup.rs
http://crates.io
http://unicode-rs.github.io
http://newrustacean.com
http://servo.org
https://github.com/open-i18n/rust-unic

Questions?

質問？
 שְׁאלֵוֹת?

प्रश्न?

질문？

سؤال؟
پرسش؟

