
Road to ICU:
Challenges and Best Practices of ICU
Adoption from JDK
Pu Chen - Globalization Principal Engineer
Bo Yang - Globalization Development Manager
Teresa Marshall - VP, Globalization & Localization

Forward-Looking Statement
Statement under the Private Securities Litigation Reform Act of 1995

This presentation may contain forward-looking statements that involve risks, uncertainties, and assumptions. If any such uncertainties materialize or if
any of the assumptions proves incorrect, the results of salesforce.com, inc. could differ materially from the results expressed or implied by the
forward-looking statements we make. All statements other than statements of historical fact could be deemed forward-looking, including any projections
of product or service availability, subscriber growth, earnings, revenues, or other financial items and any statements regarding strategies or plans of
management for future operations, statements of belief, any statements concerning new, planned, or upgraded services or technology developments
and customer contracts or use of our services.

The risks and uncertainties referred to above include – but are not limited to – risks associated with developing and delivering new functionality for our
service, new products and services, our new business model, our past operating losses, possible fluctuations in our operating results and rate of
growth, interruptions or delays in our Web hosting, breach of our security measures, the outcome of any litigation, risks associated with completed and
any possible mergers and acquisitions, the immature market in which we operate, our relatively limited operating history, our ability to expand, retain,
and motivate our employees and manage our growth, new releases of our service and successful customer deployment, our limited history reselling
non-salesforce.com products, and utilization and selling to larger enterprise customers. Further information on potential factors that could affect the
financial results of salesforce.com, inc. is included in our annual report on Form 10-K for the most recent fiscal year and in our quarterly report on Form
10-Q for the most recent fiscal quarter. These documents and others containing important disclosures are available on the SEC Filings section of the
Investor Information section of our Web site.

Any unreleased services or features referenced in this or other presentations, press releases or public statements are not currently available and may
not be delivered on time or at all. Customers who purchase our services should make the purchase decisions based upon features that are currently
available. Salesforce.com, inc. assumes no obligation and does not intend to update these forward-looking statements.

Requirements
+

Challenges

Planning
+

Implementation

Case Studies

Chapter 1 Chapter 2 Chapter 3

Path to ICU

Requirements
+

Challenges

Chapter 1 Chapter 2

Chapter 1: Requirements & Challenges

● Trust & Consistency
● Interoperability
● Ease of Maintenance
● Best Practices

Requirements

Challenges - Interoperability

Service
Cloud

Sales
Cloud

Trailhead Lightning

Integration

Einstein

Salesforce
Platform

Salesforce
Mobile App

Marketing Cloud

Community
Cloud

Analytics

Heroku

IoT

Government
Cloud

Javascript
Java

Python, Perl, PHP,
Mobile, etc.

Salesforce
Core

Salesforce Classic

AppExchange

Organizational Challenges

Incorrect/inconsistent Locale Data
Mixture of locale data from JDK, and ICU4J/CLDR

Large Feature Base
 With hundreds of teams

Cost of maintenance
210+ Locales to support

Concurrent support of ICU and JDK
locale data

Multiple Tech Stacks
Legacy Code and Acquisitions

Cross-Cloud Initiative
Existing products, new products and acquisitions

Our Customers

Sales
Cloud

Service
Cloud

Marketing
Cloud

Commerce
Cloud

Community
Cloud

Salesforce
Platform

Industries
Cloud Integration Einstein

Globalization

Release Timing
Managing both internal and external customers

Technical Challenges

The Road to ICU

Challenges - Complex Landscape

Planning
+

Implementation

Chapter 1 Chapter 2 Chapter 3

Chapter 2: Planning & Implementation

Planning the Route

Grammaticus: BaseLocalizer

i18n: AbstractLocalizer

Java: Localizer JavaScript: Localizer
Expose

What about
my own
logic?

JavaScript: i18n Library

Planning the Route - Details

Attribute Description Sample Value

currency The currency symbol. "$"

currencyCode The ISO 4217 representation of the currency code. “USD"

decimal The decimal separator. "."

grouping The grouping separator. ","

numberformat The number format pattern. "#,##0.###"

datetimeFormat The date time medium format. "MMM d, yyyy h:mm:ss a"

...

Lightning Components $Locale
https://developer.salesforce.com/docs/atlas.en-us.lightning.meta/lightning/expr_locale_value_provider.htm

https://developer.salesforce.com/docs/atlas.en-us.lightning.meta/lightning/expr_locale_value_provider.htm

● Accuracy
● Consistency & Interoperability
● Ease of Maintenance

Planning the Route - Findings

Problems:
1. 210 locales with 10-20 patterns
2. Takes ~80% of the application bundle, big performance hit
3. Difficult to format with the patterns in Javascript

Example:
‘MM/dd/y HH:mm a’

Implementation: CLDR compatible libraries design

Grammaticus: BaseLocalizer

i18n: AbstractLocalizer

Core: Localizer

Java

Aura/Lightning

Javascript

Python/perl...

CLDR based library

● Switch to use ICU4J APIs to retrieve locale data

○ com.ibm.icu.text.DateFormat df =
 com.ibm.icu.text.DateFormat.getDateTimeInstance(style, style, locale);

● JDK classes vs ICU classes

○ java.text.DateFormat -> java.text.format
○ com.ibm.icu.text.DateFormat -> com.ibm.icu.text.UFormat ->java.text.format

● 8772 DateFormat API calls in code base!

Implementation: Migrate to ICU4J

Implementation: SPI

java.util.spi java.text.spi

● CurrencyNameProvider
● LocaleServiceProvide

r
● TimeZoneNameProvider
● CalendarDataProvider

● BreakIteratorProvider
● CollatorProvider
● DateFormatProvider
● DateFormatSymbolsProvider
● DecimalFormatSymbolsProvider
● NumberFormatProvider

java -Djava.ext.dirs=$JAVA_HOME/lib/ext:$ICU_SPI_DIR <your_java_app>

Service Provider Interface (SPI)

Implementation: choose locale data provider

● Set provider, java.locale.providers=COMPAT,SPI,CLDR
○ COMPAT : Java locale data
○ SPI : Service provider data
○ CLDR : bundled CLDR data

● Support both JDK and ICU locale data

○ Adapter to wrap ICU4J classes
○ Predicate to retrieve data

NumberFormatICU.wrap(com.ibm.icu.text.NumberFormat nf =
 com.ibm.icu.text.NumberFormat.getNumberInstance(locale))

Implementation: Adjusting to JDK9

JDK9

Changes:

- Removed extension and endorsed mechanism.
- Make CLDR as default locale provider.

Solution:

- JDK-8062588 load providers for SPIs with the application class loader
- Transfer ICU jars into upgradable modules.
- Legacy locale data support.

- Set java.locale.providers=COMPAT,SPI,CLDR

java.endorsed.dirs

lib/endorsed

https://bugs.java.com/view_bug.do?bug_id=JDK-8062588

1. Setup locale data service provider
2. Configure service provider
3. Concurrent support of JDK and ICU locale data

Implementation: Demo

Implementation: Intl

Intl: the namespace for the ECMAScript Internationalization API

● Intl.Collator
● Intl.DateTimeFormat
● Intl.NumberFormat
● Intl.PluralRules

Implementation: browser locale data consistency
Browser Date Time Date & Time

 Chrome-57 58% 47% 93%

 Chrome-64 78% 70% 95%

 Firefox-52 92% 83% 98%

 Firefox-56 93% 83% 98%

 Firefox-58 93% 83% 98%

 MicrosoftEdge-13 70% 32% 79%

 MicrosoftEdge-15 73% 34% 82%

 MicrosoftEdge-16 74% 34% 83%

 Safari-10 86% 65% 89%

 Safari-11 88% 71% 88%

 Internet explorer-11 39% 16% 74%

 Nodejs-8.x 93% 84% 98%

Backend (ICU)

Frontend (Intl)

Pattern
Override

Locale data

Implementation: frontend library
module.exports = function formatDate(value, pattern, locale) {

 switch (locale) {

 case 'xx-XX':

 result = require('./exceptions/xx-XX')(value, pattern); break;

 case 'en-CA':

 result = require('./exceptions/en-CA')(value, pattern); break;

 default:

 var patterns = cache[locale];

 var dtf = patterns && patterns[pattern];

 if (!dtf) {

 dtf = new Intl.DateTimeFormat(locale, patternToOptions(pattern));

 cache[locale] = cache[locale] || Object.create(null);

 cache[locale][pattern] = dtf;

 }

 result = dtf.format(value);

 }

Implementation: Automation

● Concurrent support for both ICU4J and JDK locale data
● Benchmark build + automation (discovered 2K+ test failures)

Implementation: Bridging the API and system gap

Phase 1: Consolidate APIs to use CLDR based libraries.

Phase 2: Make existing functional code compatible with CLDR without major revision in product code.

API
System

 java.locale.providers=SPI

Implementation: Contribution back to ICU

● #13548 : Calendar.set(Calendar.WEEK_OF_YEAR, weekOfYear) return wrong value.
● #13531 : Localized time zone display names can not be retrieved through SPI.
● #13601 : Missing implementation of getFirstDayOfWeek() in CalendarICU.
● ICU4J Date compare fails due to getMillisOf() returns incorrect value.

Case Studies

Chapter 3

Chapter 3: Case Studies

Case study #1 - Type Casting Exception

Cast without type check.

JDK-8190278 ClassCastException is thrown by java.util.Scanner when a NumberFormatProvider is used.

DecimalFormat df = (DecimalFormat) NumberFormat.getNumberInstance(locale);

https://bugs.openjdk.java.net/browse/JDK-8190278

Case study #2 - Differences in currency format in JDK and ICU

ICU:

● ACCOUNTINGCURRENCYSTYLE ($123,456.79)
● CASHCURRENCYSTYLE
● CURRENCYSTYLE
● ISOCURRENCYSTYLE
● NUMBERSTYLE
● PERCENTSTYLE
● SCIENTIFICSTYLE
● INTEGERSTYLE
● PLURALCURRENCYSTYLE

($123,456.79) - $123,456.79

JDK:

● NUMBERSTYLE
● CURRENCYSTYLE
● PERCENTSTYLE
● SCIENTIFICSTYLE
● INTEGERSTYLE

Case study #3 - Pattern recognition

my_MM pattern in CLDR

A pattern generated from icu, dd-MM-yyyy B H:mm. The pattern 'B' cannot be recognized by JDK, which
is causing exception for following code,

new SimpleDateFormat(pattern, locale)

Case study #4 - Inconsistent currency code
Exception for 'be_BY' and 'pt_ST' locales.

 NumberFormat.getCurrencyInstance(locale).getCurrency().getCurrencyCode()

Solution #1: override the currency code for these two locales before calling getCurrency() method.

if (locale.toString().equals("be_BY")) {
 code = "BYR"; // JDK:BYR; ICU:BYN
} else if (locale.toString().equals("pt_ST")) {
 code = "STD"; // JDK: STD; ICU:STN
} else {
 code = NumberFormat.getCurrencyInstance(locale).getCurrency().getCurrencyCode();
}

Solution #2:
DecimalFormatSymbols.getInstance(locale).getInternationalCurrencySymbol();

Summary

● Accuracy, consistency and easy of maintenance.
● CLDR based libraries.
● Service provider.
● Plan ahead. Know the impact - and where

 CLDR

Appendix

● CLDR
http://cldr.unicode.org

● Locale-Sensitive Services SPI
https://docs.oracle.com/javase/tutorial/i18n/locale/services.html

● ICU4J Locale Service Provider
http://userguide.icu-project.org/icu4j-locale-service-provider

● Grammaticus
https://github.com/salesforce/grammaticus

 CLDR

http://cldr.unicode.org
https://docs.oracle.com/javase/tutorial/i18n/locale/services.html
http://userguide.icu-project.org/icu4j-locale-service-provider
https://github.com/salesforce/grammaticus

