Get Your Head Around Bidirectionality!

Quora

Abstract

42nd

Internationalization \& Unicode Conference

September 2018

Santa Clara, CA, USA

We know when the software is broken for a right-to-left languages like Arabic, Persian, or Hebrew, but often the solution is either not clear, or fixing it with out-of-place patches won't worth the costs down the road. Like other areas of i18n, bidirectional layout and right-to-left language support need deliberate design in the user-interface stack, and without good architecture it won't be useful for the developers or the users.

In this tutorial, we first learn how to think in right-to-left and how it mirrors into left-to-right directionality. We then look at the common problems in bidirectional applications and how to address them with generic solutions and standard algorithms.

This tutorial is suitable for anyone not familiar with right-to-left languages or bidirectional design, or interested to learn how to develop solutions for this area.

About me

- Software Engineer @ Quora, Inc.
- Co-Chair of Arabic Layout Task Force @ W3C i18n Activity
- Virgule Typeworks
- Facebook, Inc.
- IRNIC Domain Registry
- Sharif FarsiWeb, Inc.

This talk

- Bidirectional Writing Systems
- Bidirectional Text
- Bidirectional Layout
- Bidirectional Web Application
- Bidirectionality Techniques

Bidirectional Writing Systems

History

Boustrophedon

from Greek

"boustrophēdón" meaning
"ox-turning"

Line direction

 alternates. No paragraph direction.Q: Why's this useful?

History

Early Writing

 Systems- Most scripts chose one way or another
- Small set of writing symbols
- Letters, e.g. Greek Alpha or Arabic Alef
- Limited punctuations
- No numerals: roman and abjad numbers
- Later, Hindu-Arabic numerals
- Not (normally) read digit-by-digit
- Spelled out as a (whole) number
- Therefore: no direction in reading a numbers!

Today

Writing systems at national level

Today

Digital encoding

- Unicode \approx unique, unified, universal encoding
- About 150 scripts encoded in Unicode:
- ~110 left-to-right (LTR) (some could also be top-to-bottom)
- ~30 right-to-left (RTL) (some are bidi...)
- the rest are top-to-bottom, or mixed directions
- Major unified scripts
- CJK: Chinese, Japanese, Korean
- Arabic: Standard/Maghrebi Arabic, Persian, Urdu, Jawi, Uyghur, ...
- Major non-unified scripts
- Latin/Greek/Cyrillic

Bidirectional Text

Manuscript

text \& layout

Q

Semantic encoding in Unicode

Store text in

 memory in the same order as is read/processed in mind- Encode concepts, not various shapes of them
- One Arabic Letter Alef (U+0627)
- Most Arabic letters take at least 4 shapes depending on context
- But, two Latin Letter A (oops!)
- LATIN CAPITAL LETTER A (U+0041) / LATIN SMALL LETTER A (U+0061)

Semantic encoding in Unicode

Store text in

 memory in the same order as is read/processed in mind- Encode concepts, not various shapes of them
- One Arabic Letter Alef (U+0627)
- Most Arabic letters take at least 4 shapes depending on context
- But, two Latin Letter A (oops!)
- LATIN CAPITAL LETTER A (U+0041) / LATIN SMALL LETTER A (U+0061)
- Some punctuations are shared, some are not
- Single Period/Full Stop symbol for most scripts ("." U+002E)
- A pair of Question Marks ("?" U+003F, "e" U+061F)

Semantic encoding in Unicode

Store text in

 memory in the same order as is read／processed in mind－Encode concepts，not various shapes of them
－One Arabic Letter Alef（U＋0627）
－Most Arabic letters take at least 4 shapes depending on context
－But，two Latin Letter A（oops！）
－LATIN CAPITAL LETTER A（U＋0041）／LATIN SMALL LETTER A（U＋0061）
－Some punctuations are shared，some are not
－Single Period／Full Stop symbol for most scripts（＂．＂U＋002E）
－A pair of Question Marks（＂？＂U＋003F，＂e＂U＋061F）
－Some Numerals are LTR and some RTL
－Until 2006 （encoding of N’Ko），all numerals were LTR
－European（ASCII）： 0123456789 ／Eastern Hindi－Arabic（Persian）：．Irrfosv＾9
－Recently－developed African systems use RTL numerals
－N’Ko：9レVムトさ」゙J「0

Direction in text block

What will be the biggest internet trends between 2016-2020?

LTR paragraphs
are usually aligned
"flush left", a.k.a.
"left-aligned" or
"ragged right".

Direction in

 text blockRTL paragraphs are usually aligned "flush right", a.k.a. "right-aligned" or "ragged left".

What will be the biggest internet trends between 2016-2020?

$$
\begin{aligned}
& \text { بزرگترين روندهاى اينترنتى در بين سال جاى }
\end{aligned}
$$

Direction in text block

Reading direction
is usually
perceived
implicitly from the writing system...

$$
\begin{aligned}
& \text { بزرگترين روندهاى اينترنتى در بين سالهاى }
\end{aligned}
$$

Direction in text block
...allowing reading "end-aligned" text with no problems.

What will be the biggest internet trends between 2016-2020?

بزرگترين روندهاى اينترنتى در بين سالهای چr.18- Y. F.

Direction in text block

What will be the biggest internet ?trends between 2016-2020

Setting the wrong direction results in poor readability, and sometimes event close to gibberish.

Direction in text block

Let's now look at
how sequences of
shapes are
perceived.

$$
\begin{aligned}
& \text { بزرگترين روندهاى اينترنتى در بين سالهاى }
\end{aligned}
$$

Direction in text block

$$
\begin{aligned}
& \text { بزركترين روندهاي اينترنتي در بين سالهاي }
\end{aligned}
$$

Direction in text block

On the line level,
the runs are read in order, in the direction of the paragraph (base direction)

Unicode Bidirectional Algorithm (UBA)

Annex \#9 to the

Unicode Standard (UAX \#9)

- Converting a semantic in-memory string of chars into a reordering suitable for presentation (visual output)

Unicode Bidirectional Algorithm (UBA)

Annex \#9 to the

Unicode Standard (UAX \#9)

- Converting a semantic in-memory string of chars into a reordering suitable for presentation (visual output)
- Every Unicode Character has a Bidi Class
- Strong, such as letters
- Weak, such as numbers
- Neutral, such as whitespace, punctuation and symbols

Unicode Bidirectional Algorithm (UBA)

Annex \#9 to the

Unicode Standard (UAX \#9)

- Converting a semantic in-memory string of chars into a reordering suitable for presentation (visual output)
- Every Unicode Character has a Bidi Class
- Strong, such as letters
- Weak, such as numbers
- Neutral, such as whitespace, punctuation and symbols
- Some characters are Mirrored if in an RTL run
- Parenthesis are mirrored: "(" is an open parens in both LTR \& RTL
- Question Marks do not mirror: "?" is always closed on the right.

Unicode Bidirectional Algorithm (UBA)

- Input: string of characters \& base direction
- Both inputs should be set correctly to achieve the correct presentation

Unicode Bidirectional Algorithm (UBA)

High-level steps of

 the algorithm- Input: string of characters \& base direction
- Both inputs should be set correctly to achieve the correct presentation
- Output: chars' levels (evens are LTR, odds are RTL) \& position

Unicode Bidirectional Algorithm (UBA)

High-level steps of the algorithm

- Input: string of characters \& base direction
- Both inputs should be set correctly to achieve the correct presentation
- Output: chars' levels (evens are LTR, odds are RTL) \& position
- First, explicit direction levels are calculated
- Based on special directional formatting characters
- Embedding (LRE, RLE), Isolate (LRI, RLI, FSI), Override (LRO, RLO)
- Higher-level protocol
- HTML (dir="rtl")
- CSS (direction: rtl;)

Unicode Bidirectional Algorithm (UBA)

High-level steps of the algorithm

- Input: string of characters \& base direction
- Both inputs should be set correctly to achieve the correct presentation
- Output: chars' levels (evens are LTR, odds are RTL) \& position
- First, explicit direction levels are calculated
- Based on special directional formatting characters
- Embedding (LRE, RLE), Isolate (LRI, RLI, FSI), Override (LRO, RLO)
- Higher-level protocol
- HTML (dir="rtl")
- CSS (direction: rtl;)
- Then, implicit dir. levels are calculated using chars' Bidi Class
- Implicit formatting characters (LRM, RLM, ALM) take effect here

Unicode Bidirectional Algorithm (UBA)

- Input: string of characters \& base direction
- Both inputs should be set correctly to achieve the correct presentation
- Output: chars' levels (evens are LTR, odds are RTL) \& position
- First, explicit direction levels are calculated
- Based on special directional formatting characters
- Embedding (LRE, RLE), Isolate (LRI, RLI, FSI), Override (LRO, RLO)
- Higher-level protocol
- HTML (dir="rtl")
- CSS (direction: rtl;)
- Then, implicit dir. levels are calculated using chars' Bidi Class
- Implicit formatting characters (LRM, RLM, ALM) take effect here
- Finally, having the bidi levels, reordering can be done, when needed

Directional embeddings

How directions are

They translated the question

 into "بزرگترين روندهاى اينترنتى در بين Quora!
mixed when
sentences get more
complicated?

Directional embeddings

We get opposite-

They translated the question

direction runs
embedded in runs,
running opposite to the paragraph direction.

Directional embeddings

In order, these will be...

Directional embeddings

In terms of UBA embedding levels, they would be...

Directional embeddings

In terms of UBA
embedding levels, they would be...

Can go up to 126 levels!

Bidirectional Layout

```
e به سامانه وارد نشدهايد بحث مشاركتها ايجاد حساب كاربرى ورود
```


Web-based layout

\qquad صفحهُ اصلى بحـ

صفحةُ اصلى

صفحة اصلى
رويدادهاى كنونى
مقالةُ تصادفى
كمك مالى
آشنايى با دانشنامه • آشنايى با اصول ويرايش • كارهاى قابل انجام • سياستها و رهنمودها • فهرست الفبايى مقالهها • نسخَّ تلفن همراه
همكارى
تغييرات اخير ويكىنويس شويد!

راهنما
تماس با ويكىيديا
نسخهبردارى
ايجاد كتاب
PDF دريافت بهصورت نسخهُ قابل :حاب

در ديكر بروثهها

Web-based layout

Top to bottom, right to left

Web-based layout

Every block has a direction

Direction in

 layout blocksHere, we limit the discussion to horizontal writing mode with upright line orientation and downward block flow direction.

Direction in layout blocks

Here, we limit the discussion to horizontal writing mode with upright line orientation and downward block flow direction.

- Converting an LTR layout to an RTL one is called Mirroring

Direction in layout blocks

Here, we limit the discussion to horizontal writing mode with upright line orientation and downward block flow direction.

- Converting an LTR layout to an RTL one is called Mirroring
- Flow of movement is reversed in mirroring
- Start/previous/past is on the righthand-side (RHS)
- End/next/future is on the lefthand-side (LHS)

Direction in layout blocks

Here, we limit the

discussion to
horizontal writing mode with upright line orientation and downward block flow direction.

- Converting an LTR layout to an RTL one is called Mirroring
- Flow of movement is reversed in mirroring
- Start/previous/past is on the righthand-side (RHS)
- End/next/future is on the lefthand-side (LHS)
- Layout direction works very similar to text direction
- Blocks are set from start to end, depending on the contextual dir.
- Table columns are also ordered from start to end
- Any sequence, such as images, is also ordered from start to end

Direction in layout blocks

Here, we limit the

 discussion to horizontal writing mode with upright line orientation and downward block flow direction.- Converting an LTR layout to an RTL one is called Mirroring
- Flow of movement is reversed in mirroring
- Start/previous/past is on the righthand-side (RHS)
- End/next/future is on the lefthand-side (LHS)
- Layout direction works very similar to text direction
- Blocks are set from start to end, depending on the contextual dir.
- Table columns are also ordered from start to end
- Any sequence, such as images, is also ordered from start to end
- There are a few exceptions, though!
- Modern mathematics notation (usually) stays LTR
- Some well-known interfaces, like audio/video back/play/forward set

Mixed directions

Let＇s look at a basic example．．．

	Add			Share
Add Question			Share Link	
Behnam Esfahbod（エスパボドべなむ）shared Say something about this．．．				
（f）https：／／en．wikipedia．org／wiki／Emoji				
		Emoji－Wikipedia An emoji，created by the Noto project Emoji Symbol sets．．． wikipedia．org • Just now		

Mixed directions

Most elements mirror...

Some, don't.

Mixed directions

Many levels of implicit or explicit directionality

In a sample RTL Top-level direction...

Mixed directions

What if an

interface message is not translated?

Static directionality

Bidirectional Web Application

Text input

Can't make

assumption about the script of every character of usergenerated content.

H1 H2 H3 H4 H5 H6 Blockquote UL OL Code Block

Bold Italic Underline Monospace

2008 - CERN's Large Hadron Collider (section pictured), the world's largest and highest-energy particle accelerator, was first powered up beneath the Franco-Swiss border near Geneva.

Text input

Heuristic methods

often result in unexpected behavior.

H1 H2 H3 H4 H5 H6 Blockquote UL OL Code Block

Bold Italic Underline Monospace

CERN's Large Hadron Collider (section pictured), the - 2008 world's largest and highest-energy particle accelerator, was first .powered up beneath the Franco-Swiss border near Geneva
^. . . ب- برخورددهنده هـادرونـى بزركـ در ثنوسوئيس آغاز به كار كرد.

Text input

Giving control of every text block to the user has the least friction.
^... . - برخورددهنده هـادرونـى بزركـ در ثنوسوئيس آغاز به كار كرد.

2008 - CERN's Large Hadron Collider (section pictured), the world's largest and highest-energy particle accelerator, was first powered up beneath the Franco-Swiss border near Geneva.

Text processing

- The top advantage of semantic encoding of RTL/bidi text is the ease of processing

Text processing

- The top advantage of semantic encoding of RTL/bidi text is the ease of processing
- Most Unicode characters represent a linguistic element
- Although encoding of Arabic script has extra complexities

Text processing

- The top advantage of semantic encoding of RTL/bidi text is the ease of processing
- Most Unicode characters represent a linguistic element
- Although encoding of Arabic script has extra complexities
- Finding the first letter, splitting into words, truncating a paragraph, all work very similar to LTR scripts

Text output

- Most apps depend on the system/platform to render a bidi text
- Get good results iff play well with the text and layout algorithms

Text output

Plaintext

- Most apps depend on the system/platform to render a bidi text
- Get good results iff play well with the text and layout algorithms
- For plaintext, use Unicode bidi formatting chars
- Implicit: Marks (LRM, RLM, ALM)
- Useful when the problem is local and asymmetric
- e.g. positioning of a single symbol is not correct in an isolated box
- Explicit: Embedding (LRE, RLE) \& Isolate (LRI, RLI)
- Embedding is the old method, Isolate is more recent
- Useful at the boundaries of languages/scripts, also data and its surrounding sentence.

Text output

Plaintext

Text output

- Use formatting Marks for implicit matters
- As encoded characters, or
- As entities, \‎ and \&\#8206;

Text output

HTML

- Use formatting Marks for implicit matters
- As encoded characters, or
- As entities, \‎ and \&\#8206;
- For blocks and explicit directions
- Use proper attributes
- HTML (dir="rtl")
- CSS (direction: rtl;)
- Leverage the default inheritance of these properties from parent nodes to children
- Set dir attribute on the <html> or <body> tags

Text output

HTML

- Use formatting Marks for implicit matters
- As encoded characters, or
- As entities, \‎ and \&\#8206;
- For blocks and explicit directions
- Use proper attributes
- HTML (dir="rtl")
- CSS (direction: rtl;)
- Leverage the default inheritance of these properties from parent nodes to children
- Set dir attribute on the <html> or <body> tags
- Use CSS flipping tools to make a RTL version of LTR rules

Text output

HTML

- Use formatting Marks for implicit matters
- As encoded characters, or
- As entities, \‎ and \&\#8206;
- For blocks and explicit directions
- Use proper attributes
- HTML (dir="rtl")
- CSS (direction: rtl;)
- Leverage the default inheritance of these properties from parent nodes to children
- Set dir attribute on the <html> or <body> tags
- Use CSS flipping tools to make a RTL version of LTR rules - As of 2018, you still cannot do that natively in CSS!

Interface

Non-textual elements

e به سامانه وارد نشدهايد بحث مشاركتها ايجاد حساب كاربرى ورود

Interface

Interface vs.

Content

® به سامانه وارد نشدهايد بحث مشاركتها ايجاد حساب كاربرى ورود

Bidirectionality Techniques

Directionality

 context- Direction of text runs/blocks \& layout blocks is a contextual property

Directionality context

- Direction of text runs/blocks \& layout blocks is a contextual property
- Techniques for managing directionality context

1. Embedding
2. Inheritance
3. Cascading
4. Propagation

Directionality context

- Direction of text runs/blocks \& layout blocks is a contextual property
- Techniques for managing directionality context

1. Embedding
2. Inheritance
3. Cascading
4. Propagation

- Abstractions to provide/absorb directionality context
- Interface translation
- Text processing
- Interface components
- HTML/platform elements and custom abstractions

Embedding technique

Inline runs
(intra-block)

- If not clear about directional, set isolation boundaries
- Skip isolation for same-direction embeddings, if known

Embedding technique

Inline runs
(intra-block)

- If not clear about directional, set isolation boundaries
- Skip isolation for same-direction embeddings, if known
- Single block (start-to-end)
- One base direction per block
- Limited to 126 levels (usually)

Embedding technique

Inline runs (intra-block)

- If not clear about directional, set isolation boundaries
- Skip isolation for same-direction embeddings, if known
- Single block (start-to-end)
- One base direction per block
- Limited to 126 levels (usually)
- Examples
- Plaintext embedding using Bidi Control Characters
- HTML embedding using inline markups

Inheritance technique

- Inherit the direction of parent block
- Unless there's more evidence
- Static directionality
- Propagation (Technique \#4)

Inheritance technique

Block level

- Inherit the direction of parent block
- Unless there's more evidence
- Static directionality
- Propagation (Technique \#4)
- Top-down
- One single top-level direction
- Unlimited

Inheritance technique

Block level

- Inherit the direction of parent block
- Unless there's more evidence
- Static directionality
- Propagation (Technique \#4)
- Top-down
- One single top-level direction
- Unlimited
- Examples
- Default behavior in HTML and most native interface stacks

Cascading technique

- If no strong direction, fallback on the previous block's
- Continue fallback until there's a strong direction
- First block falls back onto the parent block (inheritance)

Cascading technique

- If no strong direction, fallback on the previous block's
- Continue fallback until there's a strong direction
- First block falls back onto the parent block (inheritance)
- Same layer
- Unlimited

Cascading technique

- If no strong direction, fallback on the previous block's
- Continue fallback until there's a strong direction
- First block falls back onto the parent block (inheritance)
- Same layer
- Unlimited
- Examples
- Paragraph direction setting
- GNOME Text Editor
- Draft.js

Cascading technique

Example from
 Draft.js (React WYSIWYG text editor)

Propagation technique

Block level
\& inline level

Propagation technique

Block level

\& inline level

- Direction of an element depend on a child element
- In inline, the (outer) element is perceived as an inline block.
- Bottom-up
- Usually limited to within a component boundary

Propagation technique

Block level

\& inline level

- Direction of an element depend on a child element
- In inline, the (outer) element is perceived as an inline block.
- Bottom-up
- Usually limited to within a component boundary
- Examples
- Hashtags (inline)

Welcome to the i18n Conference! \#unicode يونـىكد\#
\#unicode به كنفرانس بينالمللىسسازى خوش آمديد! \#يونـىكد

Propagation technique

Block level

\& inline level

- Direction of an element depend on a child element
- In inline, the (outer) element is perceived as an inline block.
- Bottom-up
- Usually limited to within a component boundary
- Examples
- Hashtags (inline)

Welcome to the i18n Conference! \#unicode يونـىكد\#
\#unicode به كنفرانس بينالمللىسـازى خوش آمديد! \#يونـىكد

- Link attachment preview (block)

Propagation technique

Example from concept for sharing external links as attachment

Other challenges

- Can't expect everyone to know UBA details by heart

Other challenges

- Can't expect everyone to know UBA details by heart
- Some systems/platforms lack some bidi features

Other challenges

- Can't expect everyone to know UBA details by heart
- Some systems/platforms lack some bidi features
- Some systems/platforms behave differently in corner cases
- e.g. Ul components for Apple \& Android

Other challenges

- Can't expect everyone to know UBA details by heart
- Some systems/platforms lack some bidi features
- Some systems/platforms behave differently in corner cases
- e.g. Ul components for Apple \& Android
- Mixing data with interface messages is always a challenge
- Strict abstraction is needed to make sure every data, such as phone numbers, are always presented in the right order.

Other challenges

- Can't expect everyone to know UBA details by heart
- Some systems/platforms lack some bidi features
- Some systems/platforms behave differently in corner cases
- e.g. Ul components for Apple \& Android
- Mixing data with interface messages is always a challenge
- Strict abstraction is needed to make sure every data, such as phone numbers, are always presented in the right order.
- Unresolved culturally questions in bidi behavior

Summary
 - How writing systems got directionality

- How bidi text works in written form, and is encoded \& represented
- How text and layout structures work in different directionalities
- Special application behaviors to support bidi locales \&/or content
- Additional problems that require better system \& i18n architecture

Additional

 Reads
Unicode Consortium

- Unicode ${ }^{\circledR}$ Standard Annex \#9-Unicode Bidirectional Algorithm (UBA)

W3C WG Notes and Articles

- Text Layout Requirements for the Arabic Script
- Authoring HTML: Handling Right-to-left Scripts
- Additional Requirements for Bidi in HTML \& CSS
- Unicode Bidirectional Algorithm basics
- Strings and bidi

Libraries

- Draft.js

질문?

質問?

שְשׁאלוֹת?

سؤال؟

چیرسشش؟؟

प्रश्न?

Questions?

Quora

